Over the last decade, research has demonstrated that spinal manipulation can change various aspects of nervous system function, including muscle reflexes, cognitive processing, reaction time, and the speed at which the brain processes information. One research group from New Zealand (Haavik et al) has hypothesized that the joint dysfunction part of the chiropractic clinical construct, the vertebral subluxation, results in altered afferent input to the central nervous system (CNS) that modifies the way in which the CNS processes and integrates all subsequent sensory input. This processing (i.e., sensorimotor integration) is a central nervous system (CNS) function that appears most vulnerable to altered inputs.
Many studies show that chiropractic adjustments result in changes to sensorimotor integration within the central nervous system. Do these changes correlate with beneficial clinical outcomes? That is not completely determined yet. It is also not clear whether the changes seen after adjustments are due to the correction of vertebral subluxation, therefore normalizing aberrant afferent input to the CNS, or are they merely due to afferent influx associated with the thrusting into the spine? These questions remain to be answered. The level of CNS involvement and the exact mechanisms underlying these neural adaptations following chiropractic adjustments remain unclear.
This new study sought to investigate possible neural plastic changes with spinal manipulation by measuring H-reflexes and V-waves. The H-reflex is an electrically evoked response that operates via the same neuronal circuitry as stretch reflexes. The H (Hoffmann) reflex may be useful to assess motoneuron excitability in vivo while also reflecting presynaptic inhibition of Ia afferent synapses. The so-called V-wave, which is an electrophysiological variant of the H-reflex, can be recorded during maximal voluntary motor contractions. The elicited V-wave response may be used to reflect the level of efferent neural drive from spinal α-motoneurons during maximal voluntary contraction (MVC).
While several previous studies have shown a decrease in the H-reflex indicating a transient attenuation of motoneuronal activity of the lumbosacral spine in both asymptomatic subjects and low back pain patients, new advances in data collection and processing have occurred since then. The purpose of this study was to take advantage of these recent technical and methodological discoveries related to the H-reflex and V-waves and explore what effect, if any, spinal manipulation of vertebral subluxations will have on them.
Methods:
Two studies were included in the paper. All participants were men, between the ages of 18 and 40 and were required to have evidence of spinal dysfunction and a previous history of subclinical pain, but absence of degenerative conditions of the spine or known contraindications to spinal manipulation. Instrumentation included: 1) surface EMG to record the (SEMG) activity of the soleus muscle (SOL) of the right leg; 2) electrical stimulation producing the H-, M-, and V-waves of the SOL muscle by stimulation of the tibial nerve and; 3) force recordings performed using a strain gauge attached to a custom-made ankle brace, while the subject performed maximum voluntary ankle dorsiflexion contractions.
During study one, ten subjects attended two sessions each, the control and the experimental (spinal manipulation) session. A second study was added wherein a group of eight participants attended two more sessions each, where only force was measured. The order of these sessions were randomized and at least 1 week separated the sessions. All experiments were performed on the right leg, while the volunteers comfortably lay prone on a massage table with their right leg firmly strapped to the table with Velcro. The following measures were collected pre and post interventions: SEMG signals during MVC; H-and M-recruitment curves; H-reflex area under curve normalized to Mmax (Harea/Mmax), H-reflex threshold, V-wave normalized to Mmax (V/Mmax), M-wave slope, H-reflex slope and the mean power frequency (MPF) of a fast Fourier transform (FFT) of the SEMG during MVC.
The entire spine and sacroiliac joints were assessed for segmental dysfunction (vertebral subluxation) and adjusted where deemed necessary by a registered chiropractor with at least 10-years clinical experience using high-velocity, low-amplitude techniques. The control condition involved passive and active movements of the subject’s head, spine, and body into the manipulation setup positions but without performing the adjustment.
Results:
Subcribe to our newsletter to stay up to date with news, tips and trick to tricks to keep in tip top shape.
View all blogsThank you! Your submission has been received!
Oops! Something went wrong while submitting the form